Lattice Series

INTRODUCTION

  • The Lattice Series redefines benchtop X-ray diffraction by combining high-power performance with compact design. Equipped with a powerful 600 W (Lattice Mini) or 1600 W X-ray source and a high-efficiency, direct-read 2D photon detector, the Lattice Series delivers exceptional data intensity and accuracy—making it ideal for demanding analytical environments.
  • Available in three configurations—Lattice Mini, Lattice Basic, and Lattice Pro—this series accommodates a wide range of technical and budgetary needs, from simple phase identification to complex in-situ studies. All models offer excellent signal-to-noise ratio and fast scan speeds, providing lab-grade data from a desktop system.
  • Whether you're analyzing complex powders, crystalline materials, or conducting highthroughput measurements, the Lattice Series provides lab-grade results with speed, power, and precision—all in a desktop footprint.
  • Lattice Series Instrument

MODEL SERIES

  • The Lattice Mini is the ideal entry point for high-quality X-ray diffraction. Designed for users who need reliable phase identification and material characterization in a truly space-saving format, the Lattice Mini delivers powerful performance in a compact, affordable package.
  • Ideal for:
  • • University and teaching laboratories
    • Small research groups
    • Routine QA/QC in ceramics, metals, and minerals
    • Rapid phase screening and basic material studies
  • The Lattice Basic is designed for laboratories that require dependable, high-throughput diffraction without the complexity of advanced custom configurations. With high angular resolution and a direct-read 2D photon detector, the Lattice Basic delivers fast, accurate results across a wide range of powder samples. It’s an excellent choice for users who prioritize precision, speed, and reliability—at an efficient price point.
  • Ideal for:
  • • QA/QC labs
    • Materials characterization
    • Educational and institutional research
    • Cement, ceramics, metals, and pharmaceuticals
  • The Lattice Pro is built for the most demanding applications. Featuring Theta–Theta geometry for enhanced sample stability and accessory support, it enables precise, high-performance analysis for advanced materials, coatings, and stress testing.
  • Ideal for:
  • • Advanced R&D environments
    • Dynamic experiments
    • Residual stress analysis
    • Film, coating, and thin-layer characterization
    • Battery and energy materials research

KEY FEATURES

  • • High-Power X-ray Source
  • Choose between 600 W or 1600 W configurations for high-intensity data collection and rapid scanning.
  • • 2D Photon Direct-Read Detector
  • A 256 × 256 pixel array captures sharp, high-resolution diffraction patterns with an excellent signal-to-noise ratio.
  • • Exceptional Angular Accuracy
  • Achieve step sizes as small as ±0.01° 2θ and ensure a consistent peak matching with standard reference materials.
  • • Flexible Goniometer Options
  • Theta–2Theta geometry for standard analysis (Mini & Basic) or Theta–Theta for enhanced sample stability (Pro).
  • • Fast, Reliable Scanning
  • Obtain full-spectrum data in minutes—ideal for routine QA and high-throughput labs.
  • • Compact Benchtop Design
  • Fits seamlessly into modern lab environments without sacrificing performance or requiring floor space.
  • • Expandable Functionality (Lattice Pro)
  • Supports advanced modules for residual stress testing, high-temperature stages, in-situ battery studies, and thin film analysis.
  • • User-Friendly Operation
  • Intuitive software and streamlined hardware design simplify training and daily use.

PERFORMANCE EXAMPLES

  • Miller Indices Theoretical Peak Measured Peak Difference
    Position Position
    012 25.579 25.577 0.0020
    104 35.153 35.15 0.0030
    116 57.497 57.497 0.0000
    1010 76.871 76.872 0.0010
    0210 88.997 88.996 -0.0010
    0114 8116.612 116.61 -0.0020
  • Comparison of Theoretical Peak Positions and Measured Peak Positions for Corundum Standard Sample
  • Instrument Repeatability Measurement
  • XRD Spectrum of Ternary Materials Black represents regular measurement mode data, and blue represents fluorescence-free mode data.
  • Test Data for Corundum Powder (10°/min)
  • Graphitization Degree Measurement
  • Measurement Spectrum for Silicon Nitride Ceramic
  • Reflective In-Situ Battery Measurements

TECHNICAL PARAMETERS

  • Model Lattice Mini Lattice Basic Lattice Pro
    X-ray tube 600 W 1600 W
    X-ray tube target material Standard Cu target, Co target is optional
    Theodolite Theta / 2theta geometry, the radius of the theodolite is 158 mm Theta / 2theta geometry, the radius of the theodolite is 170 mm Theta / theta geometry, the radius of the theodolite is 170 mm
    Maximum scanning range -3 - 156°
    Theta Minimum step size ±0.01°
    Detector Photon direct-read two-dimensional array detector
    Detector energy resolution 0.2
    Volume and Weight L 25.6 in (650 mm) × W 19.7 in (500 mm) × H 15.8 in (400 mm), 132 lbs (60 kg) L 35.5 in (900 mm) × W 26.8 in (680 mm) × H 21.7 in (500 mm), 220 lbs (100 kg)
    Sample stage Standard chip stage
    Options N/A Five-bit injector; In situ battery test accessories; SFive-bit injector; In situ battery test accessories; High temperature sample station: can be customized according to customer requirements, e.g., RT-600°C/RT- 1000°C; Residual stress measuring fixture (can be customized); Film sample stage: Size: 2.4 in (60mm) × 2.4 in (60mm) (can be customized)